The Mycotoxin Deoxynivalenol Potentiates Intestinal Inflammation by Salmonella Typhimurium in Porcine Ileal Loops
نویسندگان
چکیده
BACKGROUND AND AIMS Both deoxynivalenol (DON) and nontyphoidal salmonellosis are emerging threats with possible hazardous effects on both human and animal health. The objective of this study was to examine whether DON at low but relevant concentrations interacts with the intestinal inflammation induced by Salmonella Typhimurium. METHODOLOGY By using a porcine intestinal ileal loop model, we investigated whether intake of low concentrations of DON interacts with the early intestinal inflammatory response induced by Salmonella Typhimurium. RESULTS A significant higher expression of IL-12 and TNFα and a clear potentiation of the expression of IL-1β, IL-8, MCP-1 and IL-6 was seen in loops co-exposed to 1 µg/mL of DON and Salmonella Typhimurium compared to loops exposed to Salmonella Typhimurium alone. This potentiation coincided with a significantly enhanced Salmonella invasion in and translocation over the intestinal epithelial IPEC-J2 cells, exposed to non-cytotoxic concentrations of DON for 24 h. Exposure of Salmonella Typhimurium to 0.250 µg/mL of DON affected the bacterial gene expression level of a limited number of genes, however none of these expression changes seemed to give an explanation for the increased invasion and translocation of Salmonella Typhimurium and the potentiated inflammatory response in combination with DON. CONCLUSION These data imply that the intake of low and relevant concentrations of DON renders the intestinal epithelium more susceptible to Salmonella Typhimurium with a subsequent potentiation of the inflammatory response in the gut.
منابع مشابه
The mycotoxin deoxynivalenol promotes uptake of Salmonella Typhimurium in porcine macrophages, associated with ERK1/2 induced cytoskeleton reorganization.
Both the mycotoxin deoxynivalenol (DON) and Salmonella Typhimurium are major issues in swine production. This study aimed at examining the interaction between DON and Salmonella Typhimurium at the level of the porcine innate immune system, represented by macrophages. First, we assessed the direct cytotoxic effect of DON on porcine macrophages. Incubation with 0.25 microg/mL of DON or higher res...
متن کاملHost restriction of Salmonella enterica serotype Typhi is not caused by functional alteration of SipA, SopB, or SopD.
Salmonella enterica serotype Typhi is a strictly human adapted pathogen that does not cause disease in nonprimate vertebrate hosts, while Salmonella enterica serotype Typhimurium is a broad-host-range pathogen. Serotype Typhi lacks some of the proteins (effectors) exported by the invasion-associated type III secretion system that are required by serotype Typhimurium for eliciting fluid secretio...
متن کاملT-2 toxin induced Salmonella Typhimurium intoxication results in decreased Salmonella numbers in the cecum contents of pigs, despite marked effects on Salmonella-host cell interactions
The mycotoxin T-2 toxin and Salmonella Typhimurium infections pose a significant threat to human and animal health. Interactions between both agents may result in a different outcome of the infection. Therefore, the aim of the presented study was to investigate the effects of low and relevant concentrations of T-2 toxin on the course of a Salmonella Typhimurium infection in pigs. We showed that...
متن کاملEarly immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops
Salmonella enterica subspecies enterica serovar Typhimurium, commonly called S. Typhimurium, can cause intestinal infections in humans and various animal species such as swine. To analyze the host response to Salmonella infection in the pig we used an in vivo gut loop model, which allows the analysis of multiple immune responses within the same animal. Four jejunal gut-loops were each inoculate...
متن کاملDifferential regulation of enteric and systemic salmonellosis by slyA.
Mutation of slyA, which reduces Salmonella typhimurium virulence in mice, caused only minor attenuation of S. typhimurium virulence in orally inoculated calves. This correlated with modest reductions in intestinal invasion and enteropathogenic responses in bovine ligated ileal loops. slyA appears to regulate virulence genes involved in systemic, but not enteric, salmonellosis.
متن کامل